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NUMERICAL SIMULATION OF AN EXPLOSIVE PLASMA GENERATOR 

IN THE GASDYNAMIC APPROXIMATION 

G. S. Romanov and V. V. Urban UDC 533.6 

A two-dimensional gasdynamic model of a plasma generator is proposed. A numerical 
solution of the problem is obtained, and peculiarities of the gasdynamic flow are 
considered. Results are compared with experiment. 

The explosive plasma generator proposed by A. E. Voitenko is used to produce dense plasma 
and high-velocity plasma flows which convert a large portion of their energy into radiant 
energy. The generator (Fig. la) is a closed chamber in the form of a spherical segment, 
filled with the working gas. A metal plate driven by the explosion products moves toward 
the top of this segment, forcing the working gas into the tube. Compressed many times by 
the action of the shock wave, the gas is strongly accelerated along the device axis, with 
the mass velocity of the gas being close to the phase velocity of the motion of the point 
where plate and spherica I segment join, and many times higher than the velocity of the plate 
motion. As a result, the gas is transformed into a plasma with parameters T ~ 10S~ p 
10 I~ Pa, N ~ 1027 m -3 Directly upon exit from the tube the plasma occupies a small volume; 
then there occurs nonstationary ejection of a flare, whereupon the jet velocity may reach 
values of ~(40-90) • 103 m/sec, depending on the nature of the working gas and conditions 
in the tube [1-4]. The continuous spectrum radiation from the front of the jet has a flux 
density of ~i01~ W/m 2 with a total light energy of ~3oI0 s J/m 2 over an irradiation 
time on the order of tens of ~sec [9]. These and a number of other desirable features Of 
such a generator have stimulated the appearance of a large number of experimental studies in 
which both the gasdynamic and radiant characteristics of the plasma flow produced have been 
studied [i-i0]; however, obvious difficulties have prevented study of the dynamics of the processes 
occurring within the device. As far as development of a theory of processes in the generator 
is concerned, we have only [3], in which certain considerations pertaining to the principle 
of device operation were set forth and estimates of plasma parameters made, together with 
[6], which presented certain calculated and experimental data~ In [6] the flow in the 
generator compression chamber was assumed two-dimensional, while the flow of plasma into the 
tube, forming the directed flow, was aasumed one-dimensional. Results were presented only 
for certain integral plasma parameters and shock-wave trajectories in the generator, and 
no data characterizing the development of gasdynamic processes were presented. 

The present study is an attempt at direct numerical simulation of the gasdynamic pro- 
cesses in such a generator by indirect calculation of the nonstationary axisymmetric flow 
which develops throughout its entire volume. We will use the following formulation of the 
problem. At the initial moment t = 0 under the action of the explosion products the plate 
of mass M begins to move into the compression chamber (the spherical segment) at avelocity V, 
losing its kinetic energy to compression and acceleration of the working gas filling the 
segment in accordance with the expression 

t 

MV2 f 
2 = E i n -  ApSUdt'. (1) 

0 
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Fig. I. a) Diagram of Voitenko's explosive generator: 
i) explosive charge; 2) plate; 3) spherical segment; 
4) working gas; 5) t~e; 11 = 0.i m, ~2 = 0.2 m, R = 
0.08 m, ~ = 0.023 m); b, c) different network cells; d) 
s~division of computation region; e) shock-wave con- 
figuration within spherical segment. 
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Fig. 2. a) Distribution of various quantities over plate 
radius: i) radial gas velocity (-v); 2) pressure, log p; 
3) density, log P at times tl = 0.i, t2 = 0.115, ts = 
0.132; b) time variation of integral quantities: i) gas 
kinetic energy, log Ek; 2) total gas energy, log E; 3) plate 
kinetic energy, log Ep; 4) plate mass, M; 5) axial gas 
momentum, Iz; 6) radial gas momentum (-Ir). 

According to the data of [6], the plate remains planar in the course of its motion, which 
allows us to avoid consideration of its interaction with the segment wall, and to determine 
the mass M for each moment of time from the area of the segment base at that time. Further, 
we neglect loss of gas energy due to friction and heat exchange with the walls, considering 
the gas to be nonviscous and not thermally c~onductive. We then obtain a system of equations 
describing the flow in Eulerian representation in a cylindrical coordinate system: 
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�9 Op + div(pw) = O; 
Ot 

O p E  

Ot 

OP----~u + div ( p u w ) +  - - a  ~___s = 0; 
a t  ' az 

Opv  + d i v ( p v w )  + Op -- O; 
Ot Or 

+ div (pEw) + div (pw) = 0; p = p (P, e). 

( 2 )  

The initial data for the equation system (i), (2) is given at t = 0 by the values U = Uo, 
u = 0, v = 0, ~ = go, 0 = Po. Boundary conditions on the immobile rigid walls and the axis 
of symmetry require the normal velocity component to tend to zero, w n = O, while on the 
boundary between plate and working gas, the normal velocities must be equal. 

The equation of state of the medium p = p(p, E), obtained by solving the complete system 
of Saha equations by the method of [Ii], with numerical integration of the finite-difference 
energy equation of system (2) is used in the form of a network function in logarithmic vari- 
ables. The values of log p in each cell of the computation network of the problem are found 

by linear interpolation from the nearest nodes of this function, 

The integration region (Fig. id) is subdivided into an irregular network of cells of two 
types, centered as shown in Fig. ib, c. Such a subdivision of the computation region permits 

Use in the general case of only two types of special (boundary) calculation cells (and in the 
case considered only one special cell need be used) instead of the 12 which must be employed 
in the regular network of [12], significantly simplifying calculation in the presence of 
movable boundaries. The finite-difference equations for system (2) to first-order accuracy 
in the full cell (b) are analogous to the "coarse particle" method of [13], while for the 

partial cells (c) we have 
At (3)  u~i  = u q . - -  ( 2 p ~  - -  p n  ) - -  �9 

1 n 

At (4)  
v i i  = v ~  - -  (2PiJ - -  P,,. ~.___~ ) Ar#~., ; 

- .  lud ~ + Iv,A (5) v~ i = sign(vo) 
I - 6 ~  z 

u~. = sign (ui~) ~ [  ~; (6)  tt 

= A :  7 " -21- PT, " ; ( 7 )  ' l  '1 - t -  ( 1 .U. 1 . -1"- A 1 V. 
- -  -~-,1 ~-- - i f - 4  i - -  - - - ~ -  t, i - -  - -  

o , ~ )  ' = o'l: + 

n u n . u n 
P ~ - I , i  , 1 A j ;  . ~ > 0  

~ - - g - 4  ~ - " T  '] 

" "u n . "u n 
Pi i  . 1 A ] ;  . ] . ~ 0 

~ -  --5- .I ~ -  - 3 -  ,I 

+ 

n ~n  . . u n  
9 i , i - 1  . .  i A ] , . .  i 7:>0, 

t , l - ~ -  i - -  T -  , a - -  5 -  

p~}F' ~ A  ~ ; :  ~ < 0 ;  
i , i -  -T-  i -  --g- i,i 2 

(8) 

x , ~  = '27/ P'~" 1 + p,:;' 

where 

- '* '* " "  iAi ;  u n 
X i - l  . i p i - l  ,i u --,~ i _  =_2 ~ 0 

. . . . .  - ,~ iA.f; u '~ X;.iO: i U. . , , _ )  ,__i_: <~  

/z tl - lz . ~ n Xi, i- lpi , j -"  L ' . .  1 A i , o . .  i > 0 ,  

_~ 1 _ _ _  t ' ' : -  -5- : -  .~-  ~,1- ~ -  

: + '  t 2" 7," A (9) w l  | i i P i i  . . ] . I , . . ~ 0 ,  
1 ~ 4 -  -5-. 1 -  " T  ~ ' ~ -  @ 

x =  {u, v, E"+'}; 2" ={u", F', ~"}; [3 = az.'Ar: 
2r ~ At 

A j  = 2 0 M  : -  ~ -  
; A 1 = 

" - -  ( A r '  I A r j  Arj ] Az,: " " 
r j - -  6 ] " r ~ -  6 j \ 
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Values of quantities at the cell boundaries, pn �9 pn �9 u n 
�9 1 ' . .  1 ' 1 

L----~-,i ~,I 2 i - - T ' i  
�9 ~jn " n  �9 . . 1 2  

I ) U l , I , 

are determined by interpolation of the corresponding values at the cell centers: 

n 

P~,i- ~ = 
2 

/Z n n n 
Pi, i--1 Arj-~,  p i / A r i _  1 . un U i - I  i A z ~  q-  t t i i A z i - i  . 

A r j +  h r . _ )  , . t .------ ' - , ' - 7 , 1  Az~ + hz~_ t  

~n - "  , a r  I = v i , j - ,  J § v~iArJ-t . ; etc. 
z,I- -7- AO + Ari_ ~ 

,n+1 n+1 The velocities -ij and vij are calculated by formulas similar to Eq. (5), (6). 

The equation of plate motion in difference form is written as 

4 ~ l r j A  O U n A t  ] , / 2  (i0) 

Calculation of each step in time is divided into several stages. In the first, plate 
motion occurs along the axis a distance Az, and new values of A zl, Arj, rj, rj• and 
plate area and mass are calculated. The gas is assumed immobile. In the-second stage, 
neglecting mass flow across cell boundaries, we define intermediate values of the gasdynamic 
quantities ~., ~=, E~ using Eqs. (3)-(7). Further, in the third stage, we consider pas- 3 x j  ~ j  
sage of mass, momentum, and energy through cell boundaries and gas displacement under the 
action of the plate. Using Eqs. (8), (9), written with consideration of the boundary con- 
ditions, we calculate values of density, velocity components, and gas energy for the new 
time value. The pressure is found from a table of p = p(o, s) values. The fourth stage 
consists of definition of a new plate velocity with Eq. (i0). With this stage the new time 
step is completed. 

For the stability criterion of the finite-difference system we employ the standard 
Courant condition, according to which 

At = k min{Azj, AO} 
max {(Iwl + c) i j }"  ( 1 1 )  

Upon approach of  the  p l a t e  to the  boundary of  a c e l l  of the  E u l e r i a n  computat ion g r id  
Az i § 0, and thus the time step At § 0 [Eq. (ii)], so that at Az i = AZmi n the procedure of com- 
bining cells with small dimensions is performed so that the volume of the new cell is equal 
to the sum of the volumes of the two previous ones. The values of the gasdynamic quantities 
in the new cell are determined from the conditions of conservation of mass, momentum, and 
system energy. Plate motion within the tube is not considered, since its mass and velocity 
are already low by such time. 

We will consider the results of a numerical solution for a device with measurements as 
indicated in Fig. la, which correspond to the experimental conditions of [9]. In accordance 
with [9] the plate mass Mo = 43.8"10 -3 kg, Uo = 6"10 -3 m/sec. The working gas used was neon 
with initial pressure po = 105 Pa and density 0o = 8.95"10 -I kg/m 3. The finite-difference 
equations corresponding to Eqs. (i), (2) with initial and boundary conditions were solved for dimen- 
sionless variables. The characteristic values of the dimensional variables in the problem were 
taken as length, I, = O = 2.3.10 -2 m; velocity, w, = lOam/sec; pressure, p, =107 Pa; density, p, = i0 -: 
kg/m 3. In this case ~, = 106 J/kg; M, = 1.2.10 -~ kg; E, = 1.2.102 J. Figure id shows shock-wave 

configurations in the working chamber at successive moments in time, separated in intervals 
At (left, earlier; right, later). The shock wave generated by the plate i is reflected from 
the spherical segment wall in the form of wave 2, which in turn intersects with lateral wave 
3, formed by intense expulsion of gas from the region near the junction of the plate and 
spherical segment. Initially the intersection of waves 2 and 3 is regular, then as a result 
of the increasing angle between wave 3 and the spherical segment surface it becomes irregular 
(Machlike) and a triple configuration develops because of departure of the intersection 
point from the wall and the appearance of wave 4 [14]. 

We note that the wave picture found in the calculation agrees with that described in 
0 

[3], the only difference being that in the calculation we find the development of the lateral 
wave 3, which inhibits multiple reflection of wave I from the sides of the angle formed by the 
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Fig. 4. Spatial pressure distribution at a) t~ = 0.125; b) t2 = 0.592. 

segment surface and the plate. Beyond reflected wave 2 there occurs compression and partial 
braking of the gas in the direction of the axis. The greatest compression and radial veloc- 
itY occur behind the front of lateral wave 3 (Fig. 2a). The increase in these parameters 
with approach of the plate to the end of the chamber is marked. The time t~ in this figure 
corresponds to the beginning of the collision of gas flows on the axis and marked braking of 
the plate. The latter explains the reduction in Ivl, p, andp inside the corner formed by 
the plate and chamber wall. 
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The behavior with time of the integral quantities characterizing motion from the moment 
of departure of the forward shock wave into the tube until the time the plate reaches the 
tube is shown in Fig. 2b. From the beginning of formation of discontinuities in the flow up 
to the time of complete exit of the flow into the tube, the kinetic and internal energies 
of the gas are practieally equal in magnitude and increase with time. The total gas energy 
increases by a factor of 2.5 times, the kinetic energy of the plate drops by a factor of 
about 160, and its mass decreases by a factor of ~5. We note that ~5%of the plate energy is 
transferred to the plasma, which agrees with the experimental data of [9, i0]. The sharp 
increase in axial momentum at t ~ 0.12 begins because of departure of the lateral waves into 
the tube, and the fall in radial momentum at t ~ 0.13 is due to collision of these waves 
on the axis. 

The direct shock wave propagating within the chamber changes parameters somewhat, fol- 
lowing the plate velocity (Fig. 3a, b). At the beginning of gas flow collision on the axis~ 
and flow formation in the tube the velocity profile changes greatly (Fig. 3c), the form of 
the latter being characteristic of a moving jet. The time t4 in this figure corresponds to 
departure of the jet into external space. The highest pressure and density values at this 
time are achieved at the beginning of the tube, then move to the head of the jet as the 
flare is expelled. As a result of the collision the pressure increases to several hundred 
thousand atmospheres, the density increases hundreds of times, and the temperature reaches 
hundreds of thousands of degrees. The pressure variation in the system for two different 
times (before collision of the lateral waves and after exit of the jet from the tube into 
the space beyond) is shown in Fig. 4a, b. It should be noted that the entire flow of the 
plasma jet within the tube is significantly non-one-dimensional, which invalidates the one- 
dimensional approximation used in [6]. After flow accumulation on the system axis at t 
0.13, as the tube fills with plasma, radial oscillatory motions are seen in the jet with 
a period of about 2 Bsec, upon which the density and pressure rise in different manners on 
the" axis andtube walls. It is interesting that the jet temperature remains practically 
constant (~6-7 e~)at all points while this occurs. The mean velocity of the forward front 
of the flow at the lO-cm section comprises 27 km/sec, which agrees well with the data of [9]. 

Thus, the results presented confirm the validity of the numerical model chosen, permit- 
ting its use for prediction of necessary conditions for production of optimal plasma param- 

eters. 

In conclusion, we note that thecalculation of the problem was performed with a FORTRAN 
program on a Minsk-32 computer. To verify the reliability of the solution obtained various 
calculation grids were used, with 28 • 22, 56 x 44, and 112 x 88 cells along the radius and 
axis of the spherical segment, and 6, 12, and 24 cells along the tube radius, There was 
no significant change in the flow pattern with change from the coarser to the finer grid, 
but the propagation velocity of the lateral shock wave did differ. This can be explained by 
the dep@ndence of the gas mass velocity in the wave on the accuracy with which the chamber 
wall surface is approximated. Satisfactory convergence of the calculation results was 

achieved even with the intermediate-size grid. 

The authors thank R. I. Soloukhin for his support, and A. E. Viotenko, A. A. Deribas, 
and V. I. Kirko for their suggestions, because of which this study was commenced. 

NOTATION 

T, temperature; p, pressure; N, number of gas particles per unit volume; w gas mass 
velocity vector with components Wz = u and w r = v; z, axial coordinate; r, radial coordinate 
t, time; E, total specific energy of gas; E, specific internal energy; P, density; V, plate 
velocity; Ein, initial plate energy; M, plate mass; S, plate area; Ap, pressure difference 
between left and right sides of plate; At, Az, Ar, time and space steps; k < i, Courant 
number; c, velocity of sound in the gas. Indices: O, initial value; *, characteristic dimen- 
sional quantities; i, j, grid cell indices along z and r; n, number of time step; (~), symbol 
denoting intermediate values of gasdynamic variables in a time layer. 
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